Some Combinatorial and Algorithmic Applications of the Borsuk-Ulam Theorem
نویسندگان
چکیده
The Borsuk-Ulam theorem has many applications in algebraic topology, algebraic geomtry, and combinatorics. Here we study some combinatorial consequences, typically asserting the existence of a certain combinatorial object. An interesting aspect is the computational complexity of algorithms that search for the object. The study of these algorithms is facilitated by direct combinatorial existence proofs that bypass Borsuk-Ulam.
منابع مشابه
Combinatorial and Algorithmic Applications of the Borsuk-Ulam Theorem
The Borsuk-Ulam theorem states that if f : S → R is a continuous mapping from the unit sphere in R into R, there is a point x ∈ S where f(x) = f(−x); i.e., some pair of antipodal points has the same image. The recent book of Matoušek [21] is devoted to explaining this theorem, its background, and some of its many consequences in algebraic topology, algebraic geometry, and combinatorics. Borsuk-...
متن کاملDigital Borsuk-Ulam theorem
The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.
متن کاملعدد تناوبی گرافها
In 2015, Alishahi and Hajiabolhassan introduced the altermatic number of graphs as a lower bound for the chromatic number of them. Their proof is based on the Tucker lemma, a combinatorial counterpart of the Borsuk-Ulam theorem, which is a well-known result in topological combinatorics. In this paper, we present a combinatorial proof for the Alishahi-Hajiabolhassan theorem.
متن کاملCombinatorial Proofs of Some Theorems in Algebraic Topology
Two important theorems in algebraic topology are the Brouwer Fixed Point theorem and the Borsuk-Ulam theorem. The theorems require the development of homology in their standard proofs. However, each theorem has an equivalent combinatorial result involving triangulating the relevant surface and coloring the vertices of the triangulation. Then by taking the limit of a sequence of finer triangulat...
متن کاملA Borsuk-Ulam Equivalent that Directly Implies Sperner's Lemma
We show that Fan’s 1952 lemma on labelled triangulations of the n-sphere with n + 1 labels is equivalent to the Borsuk–Ulam theorem. Moreover, unlike other Borsuk–Ulam equivalents, we show that this lemma directly implies Sperner’s Lemma, so this proof may be regarded as a combinatorial version of the fact that the Borsuk–Ulam theorem implies the Brouwer fixed-point theorem, or that the Lustern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 23 شماره
صفحات -
تاریخ انتشار 2007